Outstanding
Questions In
Debris Disks

Science

Christine Chen (STScl)




Dust in Exoplanetary Systems

A Chronology of the Discovery of the Giant Planet in the B Pic disk:

Flux density (Jy)

with 9+/-3 M.

IRAS far-infrared photometry detects thermal emission from dust that must
(1) be circumstellar and (2) contain a central clearing (Sadakan & Nishida
1986; Backman & Paresce 1993)

Initial high contrast imaging using HST/STIS discovers a warp in the inner
disk that provides further support for the presence of a companion. The
location of the warp is used to constrain the mass (48 — 0.17 M, ;)/distance
(<3 AU — 150 AU) of the companion (Heap et al. 2000)

Recent high contrast imaging using VLT/NACO images the companion at a
distance of 8-13 AU and implies the presence of a planetary mass object
(Lagrange et al. 2010)
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Solar System

HR 8799

Probes of Planet Formation

Direct Observables

e Architecture
— Dust spatial structure

— Central clearings, gaps,
and brightness peaks
may constrain the
location of planets

* Composition

— Proxy for bulk
composition in minor
bodies

— Composition gradients
expected based on
distance from star
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Dust Producing Epochs in
Our Solar System

e Terrestrial Planet Formation

— Oligarchic Growth
— Giant Impacts

* Period of Late Heavy Bombardment
* Present day Zodiacal dust and dust

in the Kuiper Belt
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Chen et al. (2009)

HR 8799

Marois et al.
(2008, 2012)



Flux Density (erg s—1 cm—2 Hz—1)

107°

1077

1078

107°

1071°

10-11

Black Body Emission

lI—'—

| [ /S

/

Wavelength (micron)

100

| lllIlllI | IIIlIllI Lot

L1 lllIIlI

llIlllI

1000



Spitzer

Previous Missions

— MIPS

Surveyed thousands of stars
Discovered 1000 debris disks

Disk fraction as a function of stellar age

— Large variation in disk properties at a single age

— Decline in infrared excess consistent with collisional evolution
Disk fraction as a function of stellar mass

Disk fraction as a function of presence/absence of companions

Broad SED fits giving dust distances for 500 targets
Spectral features observed toward 120 targets with trends
Detailed mineralogy for half a dozen sources

Herschel
— PACS

Surveyed hundreds of nearby stars
Spatially resolved half of nearby disks
Discovered that confusion is a bigger problem than previously thought

Improved debris disk fractions as a function of spectral type (decreased around A-type
stars and increased around lower mass stars)

Discovered atomic gas toward a handful of systems
Characterized the silicate emission feature toward one system
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Observed Debris Disk Evolution
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* Infrared excess decays with time
 The shape of the upper envelope indicates that the disks are collisionally dominated

* The magnitude of infrared excess around A-type stars decays with a timescale ~150 Myr
and ~400 Myr at 24 and 70 um, respectively, consistent with inside-out evolution

* There are some very dusty disks that may be experiencing interesting evolutionary

periods
(Su et al. 2006)
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Observed Stellar Mass Dependence

Preliminary analysis of Herschel Key Program data suggests that debris disks occur
more frequently around higher mass stars (Kennedy et al., in preparation):

Spectral Type A F G K M
Frequency 26% 24% 19% 9.5% 1.3%
Stellar 5-25 Lg 1.5-5 Lg 0.6-1.5 L, 0.08-0.6 Lg <0.08 Lg
Luminosity

Expected 70 15 mly 5 mly 2 mly 1 mly 0.8 mly
um stellar

photospheric

flux at 50 pc

Compared with typical Far-Infrared Mission Sensitivities at 70 um...
Spitzer had a 50 sensitivity of 7.2 mJy in 500 s of on source integration time
Herschel had a 50 point source sensitivity of ~¥3 mlJy in 1 hour of observatory time
The measurements of dust frequency around late-type stars may suffer from a

sensitivity bias because they possess lower luminosities than their higher mass
counterparts.




Dust Spatial Distribution
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Emissivity = SST Spectrum/B,{335.000)

Terrestrial Temperature Dust Mineralogy

Giant Hypervelocity Collision

Spitzer HD1
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Glassy silicas (Obsidian and Tektite), steep
grain size distribution with large quantities of
fine dust and possible fundamental and first
overtone emission from SiO -> Hypervelocity
Collision (Lisse et al. 2009)

= SST Spectrum / B,(390.000)

Emissivity

-0.5

0.5k

0.0

Late Heavy Bombardment

Spitzer EtaCorvus Disk Spectral Model
LA REAALL S L L R L Y LA Rl |

i
: i
AR

o I- b
Spitzer IRS & TORE]

s Sulfides ]

- W
e~ T ]
] 10 15 20 25 30 35

Wavelength (um)

Warm, water- and carbon-rich dust in the
terrestrial habitable zone -> Period of Late
Heavy Bombardment (Lisse et al. 2012)



B Pictoris Silicate Mineralogy

Herschel PACS observations of the 69 um
forsterite feature indicate that the cold
dust at 15 — 45 AU is Magnesium-rich
(with Mg, , Fe, SiO,, x =0.01+0.001)

68.5 69.0 69.5

Wavelength (um)
De Vries et al. (2012)




B Pictoris Gas
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(view from above)
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two-clump model

. . I
Herschel Ol and C Il line detections

(e.g. Cataldi et al. 2014):

* Photo dissociation products of
molecular gas

ALMA CO J=3-2 Emission map
(Dent et al. 2014):

* The clump may indicate that
there is an additional >10
M.+, Planet that traps the
comets in the 2:1 and 3:2
mean motion resonances
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Detailed Characterization using JWST

Central star
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Questions to be addressed by the Next
Generation of Far-Infrared Missions...

 What are the demographics of debris disks around late-type
stars?

* What is the composition of the cold dust component (e.g.
silicate, phyllosilicate, ice)?

e How common is atomic (e.g. O I, Cll) and molecular (e.g. CO,
SiO) gas in debris disks?



M-type Star Continuum Estimates

AU Mic is an ~10 Myr old M1Ve star with a fractional infrared luminosity Lz/L« =
4.3x10* located at a distance ~10 pc (Plavchan et al. 2009)
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103 104 10~
10 pc 565 mly 56.5 mly 5.7 mly
50 pc 22.6 mly 2.3 mly 0.2 mly
250 pc 0.9 mly 0.09 mly 0.009 mly

Far-infrared surveys with a sensitivity of ~10 ply could definitively measure the
demographics of debris dust around all main sequence stars.
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Water Ice and Phyllosilicates

HD 142527

 |SO far-infrared
spectroscopy of a pre-main
sequence star

Warm dust component
(500-1500 K), dominated by
silicate emission with some
C-rich dust (Graphite and

[CII])
/ e Cool dust component (30 -

Total fit

60 K), dominated by O-rich

dust. Crystalline water ice

and hydrous silicates are

\ present in the cold
environment

Sil/Fe0
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Water Ice Detection Challenges

Multi-wavelength modeling of the disk around the Pic Moving Group member, HD 181327
suggests that the dust in this system is water-ice rich (Lebreton et al. 2012, Chen et al 2008)
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NICMOS 1.6 um image (Soummer et al. 2014)
Since there are no strong crystalline features, it is particularly important to accurately
correct the Spectral Response Function over a very large wavelength range.



Characterizing Cold Silicate Dust

* Requires spectral resolution o |
(RZ].OOO) 10" ;
* Mag:Fe ratiois inferred from R
peak position o
. . . . 10”
* Grain crystallization and size o
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Atomic Line Flux Estimates
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Star Age F,(70 um) F([C I1]) References
(Myr) (mly) (Wm?)
B Pic (above) 20 13000 3.4x10Y | Brandeker et al. 2014
49 Cet 40 2100 3.7x1018 | Roberge et al. 2013
HD 32297 30 1000 2.7x10'8 | Donaldson et al. 2013
n Tel 20 7.8 2.3x10°'8 | Riviere-Marichalar et al. 2014

If gas mass is proportional to cold dust mass, then young debris disks may possess C
line fluxes of at least as small as 7.7x102° W m-2 (assuming 70 um fluxes of 30 mly).



Grain Dynamics Revealed via Multi-wavelength
Thermal Emission Mapping
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Micron-sized grains ~100 um grains >~1 mm grains
Spitzer/JWST Far-IR Interferometry ALMA

(Wyatt 2006)



Desired Measurement Capabilities

Parameter m Value or Range

Wavelength range um 30 - 250
Angular resolution arcsec ~0.1”

Spectral resolution, (A/AA) dimensionless 1000

Continuum sensitivity wly At most a few
Spectral line sensitivity 101 W m~2 0.1
Instantaneous FoV arcmin 100”

Number of target fields dimensionless 1000

Field of Regard Ssr All sky



